[1] GELEAND I, DORFMAN I. Hamiltonian operators and algebraic structures related to them [J]. Func Anal Appl, 1979, 13: 13-30. [2] BALINSKY A, NOVIKOV S. Poisson brackets of hydrodynamic type, Frobenius algebras and Lie [J]. Soviet Math Dokl, 1985, 32: 228-231. [3] OSBORN J. Novikov algebras [J]. Nova J Algebra, 1992(1): 1-14. [4] BURDE D. Left symmetric algebras, or pre-Lie algebras in geometry and physics [J]. Cent Eur J Math, 2006(4): 323-357. [5] ZELMANOV E. On a class of local translation invariant Lie algebras [J]. Soviet Math Dokl, 1987, 35: 216-218. [6] OSBORN J. Simple Novikov algebras with an idempotent [J]. Comm Algebra, 1992, 20: 2729-2753. DOI: 10.1080/00927879208824486. [7] XU X P. On simple Novikov algebras and their irreducible modules [J]. J Algebra, 1996, 185(3): 905-934. DOI: 10.1006/jabr.1996.0356. [8] GUEDIRI M. On a remarkable class of left-symmetric algebras and its relationship with the class of Novikov algebras [J]. Comm Algebra, 2016, 44: 2919-2937. DOI: 10.1080/00927872.2015.1065853. [9] BAI C M, MEND D J. The classification of Novikov algebras in low dimensions: Invariant bilinear forms [J]. J Phys A, 2001, 34(39): 8193-8197. DOI: 10.1088/0305-4470/34/39/401. [10] BENES T, BURDE D. Classification of orbit closures in the variety of 3-dimmensional Novikov algebras [J]. J Algebra Appl, 2014, 13(2): 1350081. DOI: 10.1142/S0219498813500813. [11] DZHUMADIL’DAVE A, ZUSMANOVICH P. Commutative 2-cocycles on Lie algebras [J]. J Algebra, 2010, 324: 732-748. DOI: 10.1016/j.jalgebra.2010.04.030. [12] STRACHAN I, SZABLIKOWSKI B. Novikov algebras and a classification of multicomponent Camassa-Holm equations [J]. Stud Appl Math, 2014, 133: 117. [13] PEI Y F, BAI C M. Realizations of conformal current-type Lie algebra [J]. J Math Phys, 2010, 51(2): 052302. [14] PEI Y F, BAI C M. Novikov algebras and Schrödinger-Virasora Lie algebra [J]. J Phys A, 2011, 44(4): 045201. DOI: 10.1088/1751-8113/44/4/045201. [15] ZUSMANOVICH P. A Compendium of Lie structures on tensor products [J]. J Math Sci, 2014, 199(3): 266-288. DOI: 10.1007/s10958-014-1855-6. [16] BALINSKY A. Classification of the virasoro, the Neveu-Schwarz, and the Ramond-type simple Lie superalgebras [J]. Functional Anal Appl, 1987, 21: 308-309. [17] XU X P. Variational calculus of supervariables and related algebraic structures [J]. J Algebra, 2000, 223(2): 396-437. DOI: 10.1006/jabr.1999.8064. [18] AYADI I, BENAYADI S. Symmetric Novikov superalgebras [J]. J Math Physics, 2010, 51: 023501. DOI: 10.1063/1.3269596. [19] CHEN Z Q, DING M. A class of Novikov superalgebra [J]. J Lie Theory, 2016, 26: 227-234. [20] LIU D, PEI Y F, XIA L M. On finite dimensional simple Novikov superalgebra[J]. Comm Algebra, 2019, 47: 999-1004. [21] WANG Y, CHEN Z Q, BAI C M. Classification of Balinsky-Novikov superalgebras with dimension 2|2 [J]. J Phys A, 2012, 45(22): 225201. DOI: 10.1088/1751-8113/45/22/225201. |