[1] RUZICKA M. Electrorheological fluids:Modeling and Mathematical Theory[M]. Berlin:Springer-Verlag, 2000.
[2] ANTONTSEV S N, DÍAZ J I, DE OLIVEIRA H B. Thermal effects without phase changing[J]. Progress in Nonlinear Differential Equations and Their Application, 2015, 61:1-14.
[3] ELEUTERI M, HABERMANN J. Calderón-Zygmund type estimates for a class of obstacle problems with p(x) growth[J]. J Math Anal Appl, 2010, 372:140-161.
[4] RODRIGUES J F, SANCHÓN M, URBANO J M. The obstacle problem for nonlinear elliptic equations with variable growth and L1-data[J]. Monatsh Math, 2008, 154:303-322.
[5] BLANCHARD D, GUIBÉ O. Existence of a solution for a nonlinear system in thermoviscoelasticity[J]. Adv Differential Equations, 2000, 5:1221-1252.
[6] HARJULEHTO P, HÄSTÖ P, LATVALA V, et al. Critical variable exponent functionals in image restoration[J]. Appl Math Lett, 2013, 26:56-60.
[7] GOL'DSHTEIN V, UKHLOV A. Weighted Sobolev spaces and embedding theorems[J]. Trans Amer Math Soc, 2009, 361:3829-3850.
[8] BLANCHARD D, MURAT F, REDWANE H. Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems[J]. J Differential Equations, 2001, 177(2):331-374.
[9] DAI L L, GAO W J, LI Z Q. Existence of solutions for degenerate elliptic problems in weighted Sobolev space[J]. Journal of Function Spaces, 2015, 2015:1-9.
[10] ZHANG C, ZHOU S. Entropy and renormalized solutions for the p(x)-Laplacian equation with measure data[J]. Bull Aust Math Soc, 2010, 82:459-479.
[11] 代丽丽, 曹春玲. 一类具权函数的退化椭圆方程解的性质[J].吉林大学学报(理学版),2018,56:589-593.
[12] LIONS J L. Quelques méthodes de résolution des problemes aux limites non linéaires[M]. Paris:Dunod, 1969. |