[1] OU-YANG W, WEIS M, LEE K,et al. Function of interfacial dipole monolayer in organic field effect transistors[J]. Japanese Journal of Applied Physics, 2011, 50(4S):04DK10-6. DOI:10.7567/JJAP.50.04DK10. [2] CHEN M, ZHU Y N,YAO C,et al. Intrinsic charge carrier mobility in single-crystal OFET by "fast trapping vs. slow detrapping" model[J]. Organic Electronics, 2018, 54:237-244. DOI:10.1016/j.orgel.2017.12.042. [3] JI J J, ZHOU D G,TANG Y,et al. Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility[J]. Journal of Materials Chemistry C, 2018, 6:13325-13330. DOI:10.1039/C8TC04954H. [4] OU-YANG W, WEIS M,TAGUCHI D,et al. Modeling of threshold voltage in pentacene organic field-effect transistors[J]. Journal of Applied Physics, 2010, 107(12):124506. DOI:10.1063/1.3449078. [5] WANG R, GUO Y K,ZHANG D,et al. Improved electron transport with reduced contact resistance in N-doped polymer field-effect transistors with a dimeric dopant[J]. Macromol. Rapid Commun, 2018, 39(14):1700726. DOI:10.1002/marc.201700726. [6] TEIXEIRA DA ROCHA C, HAASE K,ZHENG Y C,et al. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors[J]. Adv Electron Mater, 2018, 4(8):1800141. DOI:10.1002/aelm.201800141. [7] OU-YANG W, WEIS M,MANAKA T,et al. Effect of an upward and downward interface dipole langmuir-blodgett monolayer on pentacene organic field-effect transistors:A comparison study[J]. Japanese Journal of Applied Physics, 2012, 51(2R):024102-5. DOI:10.7567/JJAP.51.024102. [8] THUAU D, ABBAS M, WANTZ G, et al. Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory[J]. Organic Electronics, 2017, 40:30-35. DOI:10.1016/j.orgel.2016.10.036. [9] GAO X, DUAN S M, LI J F,et al. Deposition rate related DPA OFET threshold voltage shift and hysteresis variation[J]. Journal of Materials Chemistry C, 2018, 6:12498-12502. DOI:10.1039/C8TC05327H. [10] NAKAYAMA K, OU-YANG W,UNO M,et al. Flexible air-stable three-dimensional polymer field-effect transistors with high output current density[J]. Organic Electronics, 2013, 14:2908-2915. DOI:10.1016/j.orgel.2013.08.002. [11] LI J, OU-YANG W, WEIS M, et al. Electric-field enhanced thermionic emission model for carrier injection mechanism of organic field-effect transistors:understanding of contact resistance[J]. Journal of Physics D:Applied Physics , 2017, 50(2):035101. DOI:10.1088/1361-6463/aa4e95. [12] UEMURA T, ROLIN C, KE T H, et al. On the extraction of charge carrier mobility in high-mobility organic transistors[J]. Advanced Materials, 2016, 28(1):151-155. DOI:10.1002/adma.201503133. [13] CHOI H H, CHO K, SIRRINGHAUS H, et al. Critical assessment of charge mobility extraction in FETs[J]. Nature materials, 2018, 17(1):2-7. DOI:10.1038/nmat5035. [14] NIKOLKA M, NASRALLAH I, ROSE B, et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives[J]. Nature Mater, 2017, 16:356-361. DOI:10.1038/nmat4785. [15] FARAJI S, DANESH E, TATE D J, et al. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)[J]. Journal of Physics D:Applied Physics, 2016, 49(18):185102. [16] ZHANG W M, SMITH J, WATKINS S E, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors[J]. Journal of the American Chemical Society, 2010, 132(33):11437-11439. DOI:10.1021/ja1049324. [17] NIKOLKA M, SCHWEICHER G, ARMITAGE J, et al. Performance improvements in conjugated polymer devices by removal of water-induced traps[J]. Advanced Materials, 2018, 30(36):1801874. DOI:10.1002/adma.201801874. [18] LI Y N, SINGH S P, SONAR P. A high mobility P-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors[J]. Advanced Materials, 2010, 22(43):4862-4866. DOI:10.1002/adma.201002313. [19] ZHOU N J, VEGIRAJU S, YU X G, et al. Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells[J]. Journal of Materials Chemistry C, 2015, 3(34):8932-8941. DOI:10.1039/C5TC01348H. [20] LI Y N, SONAR P, MURPHY L, et al. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics[J]. Energy & Environmental Science, 2013, 6:1684-1710. DOI:10.1039/c3ee00015j. [21] COUTO R, CHAMBON S, AYMONIER C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly-(3-hexylthiophene) nanoparticles for OFET devices[J]. Chemical Communications, 2015, 51(6):1008-1011. DOI:10.1039/C4CC07878K. [22] CHIANESE F, CANDINI A, AFFRONTE M, et al. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes[J]. Applied Physics Letters, 2018, 112(21):213301. DOI:10.1063/1.5023659. [23] VASIMALLA S, SUBBARAO N V V, GEDDA M, et al. Effects of dielectric material, HMDS layer, and channel length on the performance of the perylenediimide-based organic field-effect transistors[J]. ACS Omega, 2017, 2:2552-2560. DOI:10.1021/acsomega.7b00374. [24] LEOBANDUNG E, GU J, GUO L J,et al. Wire-channel and wrap-around-gate metal-oxide-semiconductor field-effect transistors with a significant reduction of short channel effects[J]. Journal of Vacuum Science Technology B:Microelectronics and Nanometer Structures, 1997, 15(6):2791-2794. DOI:10.1116/1.589729. [25] RAY B, MAHAPATRA S. Modeling of Channel Potential and Subthreshold Slope of Symmetric double-gate transistor[J]. IEEE Transactions on Electron Devices, 2009, 56(2):260-264. DOI:10.1109/TED.2008.2010577. [26] PRETET J, MONFRAY S, CRISTOLOVEANU S,et al. Silicon-on-nothing MOSFETs:Performance, short-channel effects, and backgate coupling[J]. IEEE Transactions on Electron Devices, 2004, 51(2):240-244. DOI:10.1109/TED.2003.822226. [27] HU Y Y, LI G D, CHEN Z J. The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy[J]. IEEE Electron Device Letters, 2018, 39(2):276-279. DOI:10.1109/LED.2017.2781301. [28] CHOI S, FUENTES-HERNANDEZ C,WANG C Y,et al. A Study on reducing contact resistance in solution-processed organic field-effect transistors[J]. ACS Applied Material and Interfaces, 2016, 8(37):24744-24752. DOI:10.1021/acsami.6b07029. [29] WADA H, SHIBATA K, BANDO Y,et al. Contact resistance and electrode material dependence of air-stable n-channel organic field-effect transistors using dimethyldicyanoquinonediimine (DMDCNQI)[J]. Journal of Materials Chemistry, 2008, 18(35):4165-4171. DOI:10.1039/b808435a. [30] OU-YANG W, MANAKA T, NAITOU S,et al. Optical second-harmonic generation in hydrogenated amorphous silicon single-and double-junction solar cells[J]. Japanese Journal of Applied Physics, 2012, 51(7R):070209-. [31] OU-YANG W, MITOMA N,KIZU T,et al. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors[J]. Applied Physics Letters, 2014, 105(16):163503. DOI:10.1063/1.4898815. [32] RAJEEV K P, OPOKU C,STOLOJAN V,et al. Effect of nanowire-dielectric interface on the hysteresis of solution processed silicon nanowire FETs[J]. Nanoscience and Nanoengineering, 2017, 5(2):17-24. DOI:10.13189/nn.2017.050201. [33] HEKMATSHOAR B. Thin-film silicon heterojunction FETs for large area and flexible electronics:Design parameters and reliability[J]. IEEE Transactions on Electron Devices, 2015, 62(11):3524-3529. DOI:11.1109/TED.2015.2463721. [34] GAO X, LIN M M,MAO B H,et al. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors[J]. Journal of Physics D:Applied Physics, 2017, 50(2):025102. DOI:10.1088/1361-6463/50/2/025102. [35] MITOMA N, AIKAWA S,OU-YANG W,et al. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors:Comparison between Si-and W-dopants[J]. Applied Physics Letters, 2015, 106(4):042106. DOI:10.1063/1.4907285. [36] LIN M F, GAO X, MITOMA N,et al. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process[J]. AIP Advances, 2015, 5(1):017116. DOI:10.1063/1.4905903. [37] SALYK O, VYŇUCHAL J,HORÁČKOVÁ P,et al. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs[J]. Journal of Molecular Structure, 2010, 983(1/2/3):39-47. DOI:10.1016/j.molstruc.2010.08.026. [38] CALVO-CASTRO J, WARZECHA M,MCLEAN A J,et al. Impact of substituent effects on the Raman spectra of structurally related N-substituted diketopyrrolopyrroles[J]. Vibrational Spectroscopy, 2016, 83:8-16. DOI:10.1016/j.vibspec.2015.12.004. [39] YANG J W, FOSSUM J G. On the feasibility of nanoscale triple-gate CMOS transistors[J]. IEEE Transactions on Electron Devices, 2005, 52(6):1159-1163. DOI:10.1109/TED.2005.848109. [40] MATSUMOTO T, OU-YANG W,MIYAKE K,et al. Study of contact resistance of high-mobility organic transistors through comparison[J]. Organic Electronics, 2013, 14(10):2590-2595. DOI:10.1016/j.orgel.2013.06.032. [41] OU-YANG W, UEMURA T, MIYAKE K, et al. High-performance organic transistors with high-k dielectrics:A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene[J]. Applied Physics Letters, 2012, 101(16):223304. DOI:10.1063/1.4769436. |