Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (6): 73-84.doi: 10.3969/j.issn.1000-5641.2023.06.007
• Computer Science • Previous Articles Next Articles
Daojia CHEN1, Zhiyun CHEN2,*()
Received:
2022-05-04
Online:
2023-11-25
Published:
2023-11-23
Contact:
Zhiyun CHEN
E-mail:chenzhy@cc.ecnu.edu.cn
CLC Number:
Daojia CHEN, Zhiyun CHEN. Hierarchical description-aware personalized recommendation system[J]. Journal of East China Normal University(Natural Science), 2023, 2023(6): 73-84.
Table 1
Statistical details for five Amazon datasets"
数据集 | 评论数 (用户)/条 | 评论数 (物品)/条 | 评论 长度 | 用户 数量/个 | 物品 数量/个 | 总评论数/条 | 评分 密度/% |
Digital Music | 8 | 14 | 164 | 5541 | 3568 | 64706 | 0.327 |
Office Product | 9 | 16 | 111 | 4905 | 2420 | 53258 | 0.449 |
Grocery and Food | 8 | 10 | 78 | 14681 | 8713 | 151254 | 0.118 |
Toys and Games | 7 | 11 | 77 | 19412 | 11924 | 167597 | 0.072 |
Video Games | 7 | 15 | 147 | 24303 | 10672 | 231780 | 0.089 |
Table 2
MSE comparison of DAPR and baseline models"
模型 | MSE | ||||
Digital Misic | Office Product | Grocery and Food | Toys and Games | Video Games | |
MF | 0.8707 | 0.7149 | 1.0403 | 0.8808 | 1.2930 |
DeepCoNN | 0.8109 | 0.7128 | 1.0223 | 0.8335 | 1.1950 |
D-Attn | 0.8305 | 0.7103 | 1.0092 | 0.8334 | 1.2197 |
NARRE | 0.8098 | 0.7064 | 0.9832 | 0.8025 | 1.1422 |
DAML | 0.8102 | 0.7086 | 0.9836 | 0.8143 | 1.1722 |
MPCN | 1.1192 | 0.8304 | 1.1549 | 0.9281 | 1.2610 |
DAPR-gate | 0.8026 | 0.7059 | 0.9881 | 0.8055 | 1.1347 |
DAPR | 0.7956 | 0.6956 | 0.9804 | 0.7967 | 1.1249 |
1 | MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: Understanding rating dimensions with review text [C]// Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 2013: 165-172. |
2 | LING G, LYU M R, KING I. Ratings meet reviews, a combined approach to recommend [C]// Proceedings of the 8th ACM Conference on Recommender Systems. ACM, 2014: 105-112. |
3 | ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation [C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 2017: 425-434. |
4 | SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction [C]// Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 2017: 297-305. |
5 | CHEN C, ZHANG M, LIU Y Q, et al. Neural attentional rating regression with review-level explanations [C]// Proceedings of the 2018 World Wide Web Conference. ACM, 2018: 1583-1592. |
6 | LIU D H, LI J, DU B, et al. DAML: Dual attention mutual learning between ratings and reviews for item recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2019: 344-352. |
7 | WU L B, QUAN C, LI C L, et al. A context-aware user-item representation learning for item recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2). DOI: 10.1145/3298988. |
8 | CHIN J Y, ZHAO K Q, JOTY S, et al. ANR: Aspect-based neural recommender [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018: 147-156. |
9 | WU S W, ZHANG Y X, ZHANG W T, et al. Enhanced review-based rating prediction by exploiting aside information and user influence [J]. Knowledge-Based Systems, 2021, 222: 107015. |
10 | TAY Y, LUU A T, HUI S C. Multi-pointer co-attention networks for recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2018: 2309-2318. |
11 | WU C H, WU F Z, LIU J X, et al. Hierarchical user and item representation with three-tier attention for recommendation [C]// Proceedings of NAACL-HLT 2019. Association for Computational Linguistics (ACL), 2019: 1818-1826. |
12 | ZENG H S, AI Q Y. A hierarchical self-attentive convolution network for review modeling in recommendation systems [EB/OL]. (2020-11-26)[2022-03-21]. https://doi.org/10.48550/arXiv.2011.13436. |
13 | KOREN Y, BELL R, VOLINSKY C.. Matrix factorization techniques for recommender systems. Computer, 2009, 42 (8): 30- 37. |
14 | TAN Y Z, ZHANG M, LIU Y Q, et al. Rating-boosted latent topics: Understanding users and items with ratings and reviews [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16). IJCAI, 2016: 2640-2646. |
15 |
BAO Y, FANG H, ZHANG J.. TopicMF: Simultaneously exploiting ratings and reviews for recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28 (1): 2- 8.
doi: 10.1609/aaai.v28i1.8715 |
16 | DIAO Q M, QIU M H, WU C Y, et al. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014: 193-202. |
17 | WANG H, WANG N Y, YEUNG D Y. Collaborative deep learning for recommender systems [C]// Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015: 1235-1244. |
18 | KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation [C]// Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 233-240. |
19 | CATHERINE R, COHEN W. TransNets: Learning to transform for recommendation [C]// Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 2017: 288-296. |
20 | WANG X, OUNIS I, MACDONALD C. Leveraging review properties for effective recommendation [C]// Proceedings of the Web Conference 2021. ACM, 2021: 2209-2219. |
21 | DONG X, NI J C, CHENG W, et al. Asymmetrical hierarchical networks with attentive interactions for interpretable review-based recommendation [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20). AAAI, 2020: 7667-7674. |
22 | LI C L, QUAN C, PENG L, et al. A capsule network for recommendation and explaining what you like and dislike [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2019: 275-284. |
23 | LIU H T, WANG W J, PENG Q Y, et al. Toward comprehensive user and item representations via three-tier attention network [J]. ACM Transactions on Information Systems, 2021, 39(3). DOI: 10.1145/3446341. |
24 | GAO J Y, LIN Y, WANG Y S, et al. Set-sequence-graph: A multi-view approach towards exploiting reviews for recommendation [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. ACM, 2020: 395-404. |
25 | CHEN Y. Convolutional neural network for sentence classification [D]. Waterloo, ON Canada: University of Waterloo, 2015. |
26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 6000–6010. |
27 | DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks [C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. ACM, 2017: 933-941. |
28 | OVED N, LEVY R. Pass: Perturb-and-select summarizer for product reviews [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Association for Computational Linguistics (ACL), 2021: 351-365. |
29 | LU J S, YANG J W, BATRA D, et al. Hierarchical question-image co-attention for visual question answering [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. ACM, 2016: 289-297. |
[1] | Lulu JIANG, Siqi SUN, Haidong ZOU, Lina LU, Rui FENG. Diabetic retinopathy grading based on dual-view image feature fusion [J]. Journal of East China Normal University(Natural Science), 2023, 2023(6): 39-48. |
[2] | Jin GE, Xuesong LU. Automatic generation of Web front-end code based on UI images [J]. Journal of East China Normal University(Natural Science), 2023, 2023(5): 100-109. |
[3] | Zhishang DUAN, Yi RAN, Duliang LYU, Jie QI, Jiachen ZHONG, Peisen YUAN. Identifying electricity theft based on residual network and depthwise separable convolution enhanced self attention [J]. Journal of East China Normal University(Natural Science), 2023, 2023(5): 193-204. |
[4] | Zhaoyang WU, Jiali MAO. Research on travel time prediction based on neural network [J]. Journal of East China Normal University(Natural Science), 2023, 2023(2): 106-118. |
[5] | Yanchun LIANG, Ailian FANG. Chinese text relation extraction based on a multi-channel convolutional neural network [J]. Journal of East China Normal University(Natural Science), 2021, 2021(3): 96-104. |
[6] | LI Xiaochang, CHEN Bei, DONG Qiwen, LU Xuesong. Discovering traveling companions using autoencoders [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 179-188. |
[7] | ZHU Sihan, PU Jian. Model for click-through rate prediction based on sequence features [J]. Journal of East China Normal University(Natural Science), 2020, 2020(4): 134-146. |
[8] | YANG Dong-ming, YANG Da-wei, GU Hang, HONG Dao-cheng, GAO Ming, WANG Ye. Research on knowledge point relationship extraction for elementary mathematics [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 53-65. |
[9] | FU Yu, LI You, LIN Yu-ming, ZHOU Ya. Self-attention based neural networks for product titles compression [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 113-122,167. |
[10] | WANG Kai, LI Bo-han, WAN Shuo, ZHANG An-man, GUAN Dong-hai. Research on a commodity recommendation algorithm based on reverse furthest neighbor [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(3): 63-77. |
[11] | ZHANG Wei, ZHENG Jun, PANG Jiao-na, BAI Yue. Collaborative filtering recommendation algorithm based on the self-similarity matrix [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(4): 120-128,146. |
[12] | SONG Chun-zhi, DONG Xiao-lei, CAO Zhen-fu. Efficient verifiable privacy-preserving recommendation system [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(2): 41-51,62. |
[13] | YU Wen-zhe, ZHANG Rong, WANG Li. Recommendation in E-commerce [J]. Journal of East China Normal University(Natural Sc, 2013, 2013(3): 46-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||