[1] GABRILOVICH E. An Overview of Computational Advertising[R/OL].[2013-03-21]. http://research.yahoo.com/pub/2915. [2] AGARWAL D, CHAKRABARTI D. Statistical Challenge in Online Advertising[R/OL].[2013-03-21]. http://research.yahoo.com/pub/2430. [3] 纪文迪, 王晓玲, 周傲英. 广告点击率估算技术综述[J]. 华东师范大学学报(自然科学版), 2013(3):2-14. [4] AGARWAL D, AGRAWAL R, KHANNA R, et al. Estimating rates of rare events with multiple hierarchies through scalable log-linear models[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2010:213-222. [5] RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting clicks:estimating the click-through rate for new ads[C]//International Conference on World Wide Web. ACM, 2007:521-530. [6] HE X, PAN J, JIN O, et al. Practical Lessons from Predicting Clicks on Ads at Facebook[C]//Eighth International Workshop on Data Mining for Online Advertising. ACM, 2014:1-9. [7] CHAPELLE O, ZHANG Y. A dynamic bayesian network click model for web search ranking[C]//International Conference on World Wide Web. ACM, 2009:1-10. [8] DUPRET G E, PIWOWARSKI B. A user browsing model to predict search engine click data from past observations[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2008:331-338. [9] DAVE K, VARMA V. Predicting the click-through rate for rare/new ads[R]. Center for Search and Information Extraction Lab International Institute of Information Technology Hyderabad, INDIA, 2010. [10] REGELSON M, FAIN D. Predicting click-through rate using keyword clusters[C]//Proceedings of the Second Workshop on Sponsored Search Auctions, 2006:9623. [11] RENDLE S. Factorization machines[C]//IEEE International Conference on Data Mining. IEEE Computer Society, 2010:995-1000. [12] WANG X, LI W, CUI Y, et al. Click-through rate estimation for rare events in online advertising[G]//HUA X S, MEI T, HANJALIC A. Online Multimedia Advertising:Techniques and Technologies. Hershey:IGI Global, 2010. doi:10.4018/978-1-60960-189-8.ch001. [13] AGARWAL D, BRODER A Z, CHAKRABARTI D, et al. Estimating rates of rare events at multiple resolutions[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-Kdd. ACM, 2007:16-25. [14] AGARWAL D, CHEN B C, ELANGO P. Spatio-temporal models for estimating click-through rate[C]//International Conference on World Wide Web. ACM, 2009:21-30. [15] SCHONLAU M. Boosted regression (boosting):An introductory tutorial and a stata plugin[J]. Stata Journal, 2005, 5(3):330-354. [16] BURGES C J C. From ranknet to lambdarank to lambdamart:An overview[R]. Microsoft Research Technical Report, 2010. [17] FANG Y, LIU J. A novel prior-based real-time click through rate prediction model[J]. International Journal of Machine Learning & Cybernetics, 2014, 5(6):887-895. [18] FAIN D C, PEDERSEN J O. Sponsored search:A brief history[J]. Bulletin of the American Society for Information Science & Technology, 2010, 32(2):12-13. [19] RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting clicks:estimating the click-through rate for new ads[C]//International Conference on World Wide Web. ACM, 2007:521-530. [20] JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the 28th Annual International ACM SIGIR, 2005:154-161. |