|
跳扩散过程下期权定价的数值方法
黎 伟, 周圣武
2012 (4):
27-35.
摘要
(
3059 )
PDF(471KB)
(
2579
)
研究了跳扩散过程下期权价值所满足\,PIDE\,方程的数值计算方法. 利用四阶差分格式对空间离散, 引入四阶\,Lagrange\,插值多项式对边界进行延拓, 得到一个非齐次线性系统. 基于矩阵指数的\,$\mathrm{Pad\acute{e}}$\,逼近方法及其分数表示形式, 构建了一种高阶光滑\,Crank-Nicolson\,差分格式. 数值计算验证了该种方法的有效性, 讨论了跳跃强度对标准期权和障碍期权的影响. 与传统的\,Crank-Nicolson\,格式相比, 该格式很好地处理了在执行价格和障碍点附近数值震荡的问题. 该种方法亦可应用于一般具有非光滑边界的线性系统问题.
参考文献 |
相关文章 |
计量指标
|